نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • الناشر
    • المصدر
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
280,348 نتائج ل "Amino acids"
صنف حسب:
An overview on d-amino acids
More than half a century ago researchers thought that d -amino acids had a minor function compared to l -enantiomers in biological processes. Many evidences have shown that d -amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, d -serine ( d -Ser) acts as a co-agonist of the N -methyl- d -aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. d -Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, d -aspartate ( d -Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. d -Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain d -amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of d -amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of d -amino acids: amino acid racemase in the synthesis and d -amino acid oxidase in the degradation.
Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations
• Recent studies of Arabidopsis have identified several transporters as being important for amino acid uptake. • We used Arabidopsis plants with altered expression of lysine histidine transporter 1 (LHT1), amino acid permease 1 (AAP1) and amino acid permease 5 (AAP5) with the aim of disentangling the roles of each transporter in the uptake of different amino acids at naturally occurring concentrations (2-50 μM). • LHT1 mutants displayed reduced uptake rates of l-Gln, l-Ala, l-Glu and l-Asp but not of l-Arg or l-Lys, while AAP5 mutants were affected in the uptake of l-Arg and l-Lys only. Double mutants (lht1aap5) exhibited reduced uptake of all tested amino acids. In the concentration range tested, AAP1 mutants did not display altered uptake rates for any of the studied amino acids. Expression analysis of amino acid transporter genes with important root functions revealed no major differences in the individual mutants other than for genes targeted for mutation. • We conclude that LHT1 and AAP5, but not AAP1, are crucial for amino acid uptake at concentrations typically found in soils. LHT1 and AAP5 displayed complementary affinity spectra, and no redundancy with respect to gene expression was found between the two transporters, suggesting these two transporters have separate roles in amino acid uptake.
Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit
The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and α-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[13C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective α-keto acids, utilizing α-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.
Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method
In 1989 the Joint FAO/WHO Expert Consultation on Protein Quality Evaluation recommended the use of the Protein Digestibility Corrected Amino Acid Score (PDCAAS) method for evaluating protein quality. In calculating PDCAAS, the limiting amino acid score (i.e., ratio of first limiting amino acid in a gram of target food to that in a reference protein or requirement) is multiplied by protein digestibility. The PDCAAS method has now been in use for 20 years. Research emerging during this time has provided useful data on various aspects of protein quality evaluation that has made a review of the current methods used in assessing protein quality necessary. This paper provides an overview of the use of the PDCAAS method as compared to other methods and addresses some of the key challenges that remain in regards to protein quality evaluation. Furthermore, specific factors influencing protein quality including the effects of processing conditions and preparation methods are presented. Protein quality evaluation methods and recommended protein intakes currently used in different countries vis-à-vis the WHO/FAO/UNU standards are further provided. As foods are frequently consumed in complement with other foods, the significance of the PDCAAS of single protein sources may not be evident, thus, protein quality of some key food groups and challenges surrounding the calculation of the amino acid score for dietary protein mixtures are further discussed. As results from new research emerge, recommendations may need to be updated or revised to maintain relevance of methods used in calculating protein quality.
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer
The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues Glt Ph and Glt Tk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.
Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota
L-Amino acids are the building blocks for proteins synthesized in ribosomes in all kingdoms of life, but d-amino acids (d-aa) have important non-ribosome-based functions(1). Mammals synthesize d-Ser and d-Asp, primarily in the central nervous system, where d-Ser is critical for neurotransmission(2). Bacteria synthesize a largely distinct set of d-aa, which become integral components of the cell wall and are also released as free d-aa(3,4). However, the impact of free microbial d-aa on host physiology at the host-microbial interface has not been explored. Here, we show that the mouse intestine is rich in free d-aa that are derived from the microbiota. Furthermore, the microbiota induces production of d-amino acid oxidase (DAO) by intestinal epithelial cells, including goblet cells, which secrete the enzyme into the lumen. Oxidative deamination of intestinal d-aa by DAO, which yields the antimicrobial product H2O2, protects the mucosal surface in the small intestine from the cholera pathogen. DAO also modifies the composition of the microbiota and is associated with microbial induction of intestinal sIgA. Collectively, these results identify d-aa and DAO as previously unrecognized mediators of microbe-host interplay and homeostasis on the epithelial surface of the small intestine.
Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle
In cattle, conceptus-maternal interactions are critical for the establishment and maintenance of pregnancy. A major component of this early interaction involves the transport of nutrients and secretion of key molecules by uterine epithelial cells to help support conceptus development during the peri-implantation period of pregnancy. Objectives were to: 1) analyze temporal changes in the amino acid (AA) content of uterine luminal fluid (ULF) during the bovine estrous cycle; 2) understand conceptus-induced alterations in AA content; 3) determine expression of AA transporters in the endometrium and conceptus; and 4) determine how these transporters are modulated by (Progesterone) P4. Concentrations of aspartic acid, arginine, glutamine, histidine, lysine, isoleucine, leucine, phenylalanine and tyrosine decreased on Day 16 of the estrous cycle but increased on Day 19 in pregnant heifers (P<0.05). Glutamic acid only increased in pregnant heifers on Day 19 (P<0.001). Asparagine concentrations were greater in ULF of cyclic compared to pregnant heifers on Day 7 (P<0.05) while valine concentrations were higher in pregnant heifers on Day 16 (P<0.05). Temporal changes in expression of the cationic AA transporters SLC7A1 SLC7A4 and SLC7A6 occurred in the endometrium during the estrous cycle/early pregnancy coordinate with changes in conceptus expression of SLC7A4, SLC7A2 and SLC7A1 (P<0.05). Only one acidic AA transporter (SLC1A5) increased in the endometrium while conceptus expression of SLC1A4 increased (P<0.05). The neutral AA transporters SLC38A2 and SLC7A5 increased in the endometrium in a temporal manner while conceptus expression of SLC38A7, SLC43A2, SLC38A11 and SLC7A8 also increased (P<0.05). P4 modified the expression of SLC1A1, -1A4, -1A5, -38A2, -38A4, -38A7, -43A2, -6A14, -7A1, -7A5 and -7A7 in the endometrium. Results demonstrate that temporal changes in AA in the ULF reflect changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle, some of which are modified by P4.
Amino acids and immune function
A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.